CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Es
NP
ist
(S[dcl]\NP)/NP
alles
NP
S[dcl]\NP
>
0
in
((S[dcl]\NP)\(S[dcl]\NP))/NP
Ordnung
N
NP
*
(S[dcl]\NP)\(S[dcl]\NP)
>
0
S[dcl]\NP
<
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Es" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">Es</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="ist" data-from="3" data-to="6" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">ist</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="alles" data-from="7" data-to="12" data-cat="NP"> <tr><td class="token">alles</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)\(S[dcl]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="in" data-from="13" data-to="15" data-cat="((S[dcl]\NP)\(S[dcl]\NP))/NP"> <tr><td class="token">in</td></tr> <tr><td class="cat" tabindex="0">((S[dcl]\NP)\(S[dcl]\NP))/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Ordnung" data-from="16" data-to="23" data-cat="N"> <tr><td class="token">Ordnung</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)\(S[dcl]\NP)</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="23" data-to="24" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Es}{\catNP}{} \& \lexnode*{idm35}{ist}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm47}{alles}{\catNP}{} \& \lexnode*{idm66}{in}{((\catS[dcl]\?\catNP)\?(\catS[dcl]\?\catNP))/\catNP}{} \& \lexnode*{idm85}{Ordnung}{\catN}{} \& \lexnode*{idm93}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \binnode*{idm28}{idm35-cat}{idm47-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \unnode*{idm82}{idm85-cat}{*}{\catNP}{} \binnode*{idm55}{idm66-cat}{idm82}{\FC{0}}{(\catS[dcl]\?\catNP)\?(\catS[dcl]\?\catNP)}{} \binnode*{idm21}{idm28}{idm55}{\BC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm93-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
Everything is OK.
eng
Everything's OK.
eng
Everything is all right.
eng
Everything is fine.
eng
Everything is alright.
eng
Everything's fine.
fra
Tout est en ordre.
ita
È tutto a posto.
ita
Va tutto bene.
nld
Alles is in orde.
nld
Alles is prima.
por
Está tudo em ordem.
por
Está tudo certo.
rus
Всё в порядке.
spa
Todo está bien.
spa
Todo está en orden.
ukr
Все в порядку.