CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Ich
NP
habe
(S[dcl]\NP)/NP
keine
NP/N
Ahnung
N
N/(N\N)
T
>
NP/(N\N)
>
1
,
NP\NP
NP/(N\N)
<
1
×
was
NP/NP
das
NP
NP
>
0
S[dcl]/(S[dcl]\NP)
T
>
ist
(S[dcl]\NP)/NP
S[dcl]/NP
>
1
N\N
*
NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
.
S[dcl]\S[dcl]
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Ich" data-from="0" data-to="3" data-cat="NP"> <tr><td class="token">Ich</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="habe" data-from="4" data-to="8" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">habe</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP/(N\N)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP/(N\N)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="keine" data-from="9" data-to="14" data-cat="NP/N"> <tr><td class="token">keine</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="N/(N\N)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="Ahnung" data-from="15" data-to="21" data-cat="N"> <tr><td class="token">Ahnung</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N/(N\N)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP/(N\N)</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="," data-from="21" data-to="22" data-cat="NP\NP"> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">NP\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP/(N\N)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="N\N"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="S[dcl]/NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="S[dcl]/(S[dcl]\NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="was" data-from="23" data-to="26" data-cat="NP/NP"> <tr><td class="token">was</td></tr> <tr><td class="cat" tabindex="0">NP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="das" data-from="27" data-to="30" data-cat="NP"> <tr><td class="token">das</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/(S[dcl]\NP)</div> <div class="rule" title="Forward Type Raising"> T <sup>></sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="ist" data-from="31" data-to="34" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">ist</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]/NP</div> <div class="rule" title="Forward Composition">> <sup>1</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">N\N</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="34" data-to="35" data-cat="S[dcl]\S[dcl]"> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{Ich}{\catNP}{} \& \lexnode*{idm28}{habe}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm63}{keine}{\catNP/\catN}{} \& \lexnode*{idm80}{Ahnung}{\catN}{} \& \lexnode*{idm88}{,}{\catNP\?\catNP}{} \& \lexnode*{idm122}{was}{\catNP/\catNP}{} \& \lexnode*{idm132}{das}{\catNP}{} \& \lexnode*{idm140}{ist}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm152}{.}{\catS[dcl]\?\catS[dcl]}{} \\ }; \unnode*{idm73}{idm80-cat}{\FTR}{\catN/(\catN\?\catN)}{} \binnode*{idm54}{idm63-cat}{idm73}{\FC{1}}{\catNP/(\catN\?\catN)}{} \binnode*{idm45}{idm54}{idm88-cat}{\BXC{1}}{\catNP/(\catN\?\catN)}{} \binnode*{idm117}{idm122-cat}{idm132-cat}{\FC{0}}{\catNP}{} \unnode*{idm110}{idm117}{\FTR}{\catS[dcl]/(\catS[dcl]\?\catNP)}{} \binnode*{idm103}{idm110}{idm140-cat}{\FC{1}}{\catS[dcl]/\catNP}{} \unnode*{idm98}{idm103}{*}{\catN\?\catN}{} \binnode*{idm40}{idm45}{idm98}{\FC{0}}{\catNP}{} \binnode*{idm21}{idm28-cat}{idm40}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm152-cat}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
eng
I don't really know what that is.
eng
I have no idea what this is.
eng
I have no idea what it is.
eng
I have no idea what that is.
nld
Ik heb geen idee wat dat is.
rus
Понятия не имею, что это.
rus
Я понятия не имею, что это.