CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
Do
(S[b]\NP)/(S[b]\NP)
n't
(S\NP)\(S\NP)
(S[b]\NP)/(S[b]\NP)
<
1
×
come
S[b]\NP
again
(S\NP)\(S\NP)
.
.
(S\NP)\(S\NP)
.
S[b]\NP
<
0
S[b]\NP
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="Do" data-from="0" data-to="2" data-cat="(S[b]\NP)/(S[b]\NP)"> <tr><td class="token">Do</td></tr> <tr><td class="cat" tabindex="0">(S[b]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="n't" data-from="2" data-to="5" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">n't</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[b]\NP)/(S[b]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="come" data-from="6" data-to="10" data-cat="S[b]\NP"> <tr><td class="token">come</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S\NP)\(S\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="again" data-from="11" data-to="16" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">again</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="16" data-to="17" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S\NP)\(S\NP)</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm21}{Do}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm35}{n't}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm56}{come}{\catS[b]\?\catNP}{} \& \lexnode*{idm77}{again}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm91}{.}{\cat.}{} \\ }; \binnode*{idm10}{idm21-cat}{idm35-cat}{\BXC{1}}{(\catS[b]\?\catNP)/(\catS[b]\?\catNP)}{} \binnode*{idm66}{idm77-cat}{idm91-cat}{.}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \binnode*{idm49}{idm56-cat}{idm66}{\BC{0}}{\catS[b]\?\catNP}{} \binnode*{idm3}{idm10}{idm49}{\FC{0}}{\catS[b]\?\catNP}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Kommt nicht noch mal.
deu
Komm nicht noch mal.
deu
Kommen Sie nicht noch mal.
fra
Ne revenez pas.
fra
Ne reviens pas.
ita
Non ritornate.
ita
Non ritorni.
ita
Non ritornare.
rus
Больше не приходите.
rus
Не приходи больше.
rus
Больше не приходи.
spa
No vuelvas aquí.
ukr
Більше не приходь.