CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
He
NP
is
(S[dcl]\NP)/(S[adj]\NP)
always
(S\NP)\(S\NP)
(S[dcl]\NP)/(S[adj]\NP)
<
1
×
sad
S[adj]\NP
S[dcl]\NP
>
0
S[dcl]
<
0
,
,
therefore
S/S
,
,
S/S
.
he
NP
never
(S\NP)/(S\NP)
smiles
S[dcl]\NP
.
.
S[dcl]\NP
.
S[dcl]\NP
>
0
S[dcl]
<
0
S[dcl]
>
0
S[dcl]\S[dcl]
∨
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="He" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">He</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="is" data-from="3" data-to="5" data-cat="(S[dcl]\NP)/(S[adj]\NP)"> <tr><td class="token">is</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[adj]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="always" data-from="6" data-to="12" data-cat="(S\NP)\(S\NP)"> <tr><td class="token">always</td></tr> <tr><td class="cat" tabindex="0">(S\NP)\(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S[dcl]\NP)/(S[adj]\NP)</div> <div class="rule" title="Backward Crossed Composition">< <sup>1</sup><sub>×</sub> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="sad" data-from="13" data-to="16" data-cat="S[adj]\NP"> <tr><td class="token">sad</td></tr> <tr><td class="cat" tabindex="0">S[adj]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="," data-from="16" data-to="17" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S/S"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="therefore" data-from="18" data-to="27" data-cat="S/S"> <tr><td class="token">therefore</td></tr> <tr><td class="cat" tabindex="0">S/S</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="," data-from="27" data-to="28" data-cat=","> <tr><td class="token">,</td></tr> <tr><td class="cat" tabindex="0">,</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S/S</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="he" data-from="29" data-to="31" data-cat="NP"> <tr><td class="token">he</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="never" data-from="32" data-to="37" data-cat="(S\NP)/(S\NP)"> <tr><td class="token">never</td></tr> <tr><td class="cat" tabindex="0">(S\NP)/(S\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="smiles" data-from="38" data-to="44" data-cat="S[dcl]\NP"> <tr><td class="token">smiles</td></tr> <tr><td class="cat" tabindex="0">S[dcl]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="44" data-to="45" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\S[dcl]</div> <div class="rule" title="Conjunction">∨</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm13}{He}{\catNP}{} \& \lexnode*{idm39}{is}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \& \lexnode*{idm53}{always}{(\catS\?\catNP)\?(\catS\?\catNP)}{} \& \lexnode*{idm67}{sad}{\catS[adj]\?\catNP}{} \& \lexnode*{idm84}{,}{\cat,}{} \& \lexnode*{idm104}{therefore}{\catS/\catS}{} \& \lexnode*{idm114}{,}{\cat,}{} \& \lexnode*{idm127}{he}{\catNP}{} \& \lexnode*{idm142}{never}{(\catS\?\catNP)/(\catS\?\catNP)}{} \& \lexnode*{idm163}{smiles}{\catS[dcl]\?\catNP}{} \& \lexnode*{idm173}{.}{\cat.}{} \\ }; \binnode*{idm28}{idm39-cat}{idm53-cat}{\BXC{1}}{(\catS[dcl]\?\catNP)/(\catS[adj]\?\catNP)}{} \binnode*{idm21}{idm28}{idm67-cat}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm8}{idm13-cat}{idm21}{\BC{0}}{\catS[dcl]}{} \binnode*{idm97}{idm104-cat}{idm114-cat}{.}{\catS/\catS}{} \binnode*{idm156}{idm163-cat}{idm173-cat}{.}{\catS[dcl]\?\catNP}{} \binnode*{idm135}{idm142-cat}{idm156}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm122}{idm127-cat}{idm135}{\BC{0}}{\catS[dcl]}{} \binnode*{idm92}{idm97}{idm122}{\FC{0}}{\catS[dcl]}{} \binnode*{idm77}{idm84-cat}{idm92}{\wedge}{\catS[dcl]\?\catS[dcl]}{} \binnode*{idm3}{idm8}{idm77}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Er ist immer traurig, deshalb lächelt er nie.
fra
Il est toujours triste, donc il ne sourit jamais.
ita
È sempre triste, quindi non sorride mai.
lat
Semper tristis est. Ridet numquam.
por
Ele está sempre triste, portanto, nunca sorri.
rus
Ему всегда грустно, поэтому он никогда не улыбается.
spa
Siempre está triste, por lo tanto, nunca sonríe.