CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
No
NP/N
one
N
NP
>
0
knows
(S[dcl]\NP)/NP
when
(S/S)/S[dcl]
such
NP/NP
a
NP/N
custom
N
NP
>
0
NP
>
0
(S[X]\NP)\((S[X]\NP)/NP)
T
<
((S/S)\NP)\((S[dcl]\NP)/NP)
>
n
(S/S)\NP
<
0
S/S
<
0
first
N
NP
*
came
(S[dcl]\NP)/PP
into
PP/NP
existence
N
NP
*
.
.
NP
.
PP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
S[dcl]
>
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="S/S"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="No" data-from="0" data-to="2" data-cat="NP/N"> <tr><td class="token">No</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="one" data-from="3" data-to="6" data-cat="N"> <tr><td class="token">one</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="(S/S)\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="knows" data-from="7" data-to="12" data-cat="(S[dcl]\NP)/NP"> <tr><td class="token">knows</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="((S/S)\NP)\((S[dcl]\NP)/NP)"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="when" data-from="13" data-to="17" data-cat="(S/S)/S[dcl]"> <tr><td class="token">when</td></tr> <tr><td class="cat" tabindex="0">(S/S)/S[dcl]</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent unaryrule" data-cat="(S[X]\NP)\((S[X]\NP)/NP)"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="such" data-from="18" data-to="22" data-cat="NP/NP"> <tr><td class="token">such</td></tr> <tr><td class="cat" tabindex="0">NP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="a" data-from="23" data-to="24" data-cat="NP/N"> <tr><td class="token">a</td></tr> <tr><td class="cat" tabindex="0">NP/N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="custom" data-from="25" data-to="31" data-cat="N"> <tr><td class="token">custom</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">(S[X]\NP)\((S[X]\NP)/NP)</div> <div class="rule" title="Backward Type Raising"> T <sup><</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">((S/S)\NP)\((S[dcl]\NP)/NP)</div> <div class="rule" title="Forward Crossed Composition">> <sup><i>n</i></sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">(S/S)\NP</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S/S</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="first" data-from="32" data-to="37" data-cat="N"> <tr><td class="token">first</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="came" data-from="38" data-to="42" data-cat="(S[dcl]\NP)/PP"> <tr><td class="token">came</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/PP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="PP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="into" data-from="43" data-to="47" data-cat="PP/NP"> <tr><td class="token">into</td></tr> <tr><td class="cat" tabindex="0">PP/NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent unaryrule" data-cat="NP"> <tr class="daughters"><td class="daughter daughter-only"><table class="constituent lex" data-token="existence" data-from="48" data-to="57" data-cat="N"> <tr><td class="token">existence</td></tr> <tr><td class="cat" tabindex="0">N</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td></tr> <tr><td class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Type Changing"> * </div> </div></td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="57" data-to="58" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">PP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm20}{No}{\catNP/\catN}{} \& \lexnode*{idm30}{one}{\catN}{} \& \lexnode*{idm47}{knows}{(\catS[dcl]\?\catNP)/\catNP}{} \& \lexnode*{idm74}{when}{(\catS/\catS)/\catS[dcl]}{} \& \lexnode*{idm102}{such}{\catNP/\catNP}{} \& \lexnode*{idm117}{a}{\catNP/\catN}{} \& \lexnode*{idm127}{custom}{\catN}{} \& \lexnode*{idm143}{first}{\catN}{} \& \lexnode*{idm158}{came}{(\catS[dcl]\?\catNP)/\catPP}{} \& \lexnode*{idm175}{into}{\catPP/\catNP}{} \& \lexnode*{idm193}{existence}{\catN}{} \& \lexnode*{idm201}{.}{\cat.}{} \\ }; \binnode*{idm15}{idm20-cat}{idm30-cat}{\FC{0}}{\catNP}{} \binnode*{idm112}{idm117-cat}{idm127-cat}{\FC{0}}{\catNP}{} \binnode*{idm97}{idm102-cat}{idm112}{\FC{0}}{\catNP}{} \unnode*{idm86}{idm97}{*}{(\catS[X]\?\catNP)\?((\catS[X]\?\catNP)/\catNP)}{} \binnode*{idm59}{idm74-cat}{idm86}{\FXC{n}}{((\catS/\catS)\?\catNP)\?((\catS[dcl]\?\catNP)/\catNP)}{} \binnode*{idm38}{idm47-cat}{idm59}{\BC{0}}{(\catS/\catS)\?\catNP}{} \binnode*{idm8}{idm15}{idm38}{\BC{0}}{\catS/\catS}{} \unnode*{idm140}{idm143-cat}{*}{\catNP}{} \unnode*{idm190}{idm193-cat}{*}{\catNP}{} \binnode*{idm185}{idm190}{idm201-cat}{.}{\catNP}{} \binnode*{idm170}{idm175-cat}{idm185}{\FC{0}}{\catPP}{} \binnode*{idm151}{idm158-cat}{idm170}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm135}{idm140}{idm151}{\BC{0}}{\catS[dcl]}{} \binnode*{idm3}{idm8}{idm135}{\FC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
fra
Personne ne sait quand une telle coutume est apparue.
rus
Никто не знает, когда возник этот обычай.
tgl
Walang nakakaalam kung paano unang nabuhay ang isang kaugalian.