CCGweb
About
Manual
Download
Privacy Policy
Sign in
Sentence
ara
bul
dan
eng
est
deu
fra
hin
ind
ita
kan
ltz
mar
nld
pol
por
ron
rus
spa
srp
tur
urd
vie
Go
Parse
auto
visual
HTML
LaTeX
We
NP
have
(S[dcl]\NP)/(S[to]\NP)
to
(S[to]\NP)/(S[b]\NP)
go
S[b]\NP
.
.
S[b]\NP
.
S[to]\NP
>
0
S[dcl]\NP
>
0
S[dcl]
<
0
<div class="der"> <table class="constituent binaryrule" data-cat="S[dcl]"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="We" data-from="0" data-to="2" data-cat="NP"> <tr><td class="token">We</td></tr> <tr><td class="cat" tabindex="0">NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[dcl]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="have" data-from="3" data-to="7" data-cat="(S[dcl]\NP)/(S[to]\NP)"> <tr><td class="token">have</td></tr> <tr><td class="cat" tabindex="0">(S[dcl]\NP)/(S[to]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[to]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="to" data-from="8" data-to="10" data-cat="(S[to]\NP)/(S[b]\NP)"> <tr><td class="token">to</td></tr> <tr><td class="cat" tabindex="0">(S[to]\NP)/(S[b]\NP)</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent binaryrule" data-cat="S[b]\NP"> <tr class="daughters"> <td class="daughter daughter-left"><table class="constituent lex" data-token="go" data-from="11" data-to="13" data-cat="S[b]\NP"> <tr><td class="token">go</td></tr> <tr><td class="cat" tabindex="0">S[b]\NP</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> <td class="daughter daughter-right"><table class="constituent lex" data-token="." data-from="13" data-to="14" data-cat="."> <tr><td class="token">.</td></tr> <tr><td class="cat" tabindex="0">.</td></tr> <tr><td class="span-swiper"> </td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[b]\NP</div> <div class="rule" title="Remove Punctuation">.</div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[to]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]\NP</div> <div class="rule" title="Forward Application">> <sup>0</sup> </div> </div></td></tr> </table></td> </tr> <tr><td colspan="2" class="rulecat"><div class="rulecat"> <div class="cat">S[dcl]</div> <div class="rule" title="Backward Application">< <sup>0</sup> </div> </div></td></tr> </table> </div>
Use with
der.css
.
\begin{tikzpicture}[ampersand replacement=\&] \matrix [column sep=9pt] at (0, 0) { \lexnode*{idm8}{We}{\catNP}{} \& \lexnode*{idm23}{have}{(\catS[dcl]\?\catNP)/(\catS[to]\?\catNP)}{} \& \lexnode*{idm44}{to}{(\catS[to]\?\catNP)/(\catS[b]\?\catNP)}{} \& \lexnode*{idm65}{go}{\catS[b]\?\catNP}{} \& \lexnode*{idm75}{.}{\cat.}{} \\ }; \binnode*{idm58}{idm65-cat}{idm75-cat}{.}{\catS[b]\?\catNP}{} \binnode*{idm37}{idm44-cat}{idm58}{\FC{0}}{\catS[to]\?\catNP}{} \binnode*{idm16}{idm23-cat}{idm37}{\FC{0}}{\catS[dcl]\?\catNP}{} \binnode*{idm3}{idm8-cat}{idm16}{\BC{0}}{\catS[dcl]}{} \end{tikzpicture}
Use with
ccgsym.sty
and
tikzlibraryccgder.code.tex
.
Translations
deu
Wir müssen gehen.
fra
Il nous faut y aller.
fra
Il nous faut partir.
ita
Noi dobbiamo andare.
ita
Dobbiamo andare.
nld
We moeten vertrekken.
nld
We moeten gaan.
por
Temos que ir.
por
Nós temos de ir.
por
Nós temos que ir.
por
Temos de ir.
rus
Нам надо идти.
rus
Нам надо поехать.
rus
Нам надо пойти.
spa
Tenemos que irnos.
spa
Deberíamos irnos.
ukr
Ми маємо йти.
ukr
Ми маємо їхати.